Journal of Organometallic Chemistry, 76 (1974) C53-C55 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

OXIDATIVE-ADDITION ACROSS A CARBON—SULFUR BOND: PLATINUM(0) COMPLEXES WITH ETHYLENE TRITHIOCARBONATE AND TRIMETHYLENE TRITHIOCARBONATE

EDWARD D. DOBRZYNSKI and ROBERT J. ANGELICI

Ames Laboratory, USAEC and Department of Chemistry Iowa State University, Ames, Iowa 50010 (U.S.A.)

(Received May 3rd, 1974)

Summary

Platinum(0) phosphine complexes PtL₄ (where L = PPh₃ or PMePh₂) undergo oxidative addition reactions with ethylene trithiocarbonate, $C_2H_4CS_3$, to give *cis*-PtCS₂CH₂CH₂S(L)₂ and with trimethylene trithiocarbonate, (CH₂)₃CS₃, to give *cis*-PtCS₂CH₂CH₂CH₂CH₂S(PPh₃)₂. These bidentate ligands are displaced by CS₂ giving the free trithiocarbonates and the known CS₂ complex Pt(CS₂) (PPh₃)₂. Dimethyl trithiocarbonate, (CH₃S)₂CS, does not undergo the same type of oxidative-addition reaction with Pt(PPh₃)₄, and ethylene carbonate shows no reactivity toward Pt(PPh₃)₄.

The complex $Pt(PPh_3)_4$ [1] undergoes a facile oxidative-addition reaction with $C_2H_4CS_3$ by cleavage of a carbon—sulfur bond to form a Pt^{II} complex with a cyclic structure.

$$Pt(PPh_{3})_{4} + S \qquad S \qquad C_{6}H_{6} \qquad Ph_{3}P \qquad C_{-S} \qquad CH_{2} + 2PPh_{3}$$

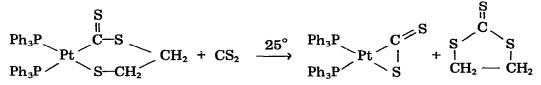
$$Pt(PPh_{3})_{4} + S \qquad S \qquad C_{6}H_{6} \qquad Ph_{3}P \qquad Pt \qquad C-S \qquad CH_{2} + 2PPh_{3}$$

Reaction occurs instantly at room temperature upon adding a benzene solution of $C_2H_4CS_3$ to a stoichiometric amount of $Pt(PPh_3)_4$ in benzene under an inert atmosphere. Removal of solvent under vacuum and trituration of the residue with Et_2O gave a white solid which was recrystallized from chloroformhexane to give the product in nearly quantitative yield. The complex *cis*-PtCS₂CH₂CH₂S(PPh₃)₂ is an air-stable, white crystalline solid, m.p. 182° (dec.). (Anal. Found: C, 54.9; H, 4.1; S, 11.3. $C_{39}H_{34}P_2PtS_3$ calcd.: C, 54.7; H, 4.0; S, 11.3%.Mol. wt. osmometrically in benzene, Found: 860; calcd.: 856.)

The NMR spectrum of cis-PtCS₂CH₂CH₂S(PPh₃)₂ (in CDCl₂) shows

complex multiplets at τ 7.5 and 6.9 (relative to TMS as internal standard) indicating non-equivalence of the ethylene protons in the bound ligand. The shielding effect of the PPh₃ ligands is shown by the relatively high field position of these multiplets compared to the singlet observed for free $C_2H_4CS_3$ at $\tau 6.02$. The analogous methyldiphenylphosphine complex cis-PtCS₂CH₂CH₂S(PMePh₂)₂ was prepared similarly from Pt(PMePh₂)₄. The NMR spectrum of this complex shows two separate resonances of equal intensity for the phosphine-methyl groups at $\tau 8.43$ and 7.89 indicating the presence of two non-equivalent phosphine ligands. Each resonance occurs as a doublet due to coupling of the methyl protons with ³¹P of the phosphine with $J({}^{31}P-{}^{1}H)$ values of 8 and 10Hz, respectively. Each of these doublets has satellite doublets due to splitting by ¹⁹⁵Pt with $J(^{195}Pt-^{1}H)$ values of 26 and 37Hz, respectively. The doublet resonance for each methyl is in agreement with a *cis* configuration for the phosphines [2]. The solid state (Nujol mull) IR spectrum of cis-PtCS₂CH₂CH₂S-(PPh₃)₂ shows sharp bands at 1089 and 1100 cm⁻¹, one of which is probably due to ν (C=S). The IR spectrum of the complex in CHCl₃ shows only a single, strong absorption at 1095 cm⁻¹. However, a strong band at this position is commonly observed in Pt^{II} complexes with PPh₃ ligands (e.g., *cis*-PtCl₂(PPh₃)₂) due to the in-plane C-H bending mode of the phenyl groups, and we believe that the ν (C=S) mode is not resolved from this band in the solution spectrum. The free ligand, $C_2H_4CS_3$, shows a strong ν (C=S) band at 1076 cm⁻¹.

Oxidative-addition reactions of Pt^0 with $ClCS_2Et$ [3], $ClCSNMe_2$ [4], and ClCSOMe [5] are known to give a metal-bonded thiocarbonyl function ($PtC \leq S$) via cleavage of the carbon—chlorine bond, and this is typical of the reactivity of many halogen-containing organic compounds toward platinum group metal complexes in low oxidation states. In order to determine whether or not the cleavage of carbon—sulfur bonds in trithioesters, as occurs with $C_2H_4CS_3$, is typical of the reactivity of all trithioesters, we examined the reaction of $(CH_3S)_2CS$ [6] with $Pt(PPh_3)_4$, and found that cleavage of a carbon—sulfur bond by Pt^0 does not occur. The unstable orange colored solid isolated from this reaction was not fully characterized. However, when this reaction was followed by NMR, only a sharp singlet at $\tau 3.54$ was observed to appear for the product. This clearly indicates that cleavage of a carbon—sulfur bond in $(CH_3S)_2CS$ to give $Pt(SCH_3)(CS_2CH_3)(PPh_3)_2$ does not occur. It therefore seems that the specific reactivity of $C_2H_4CS_3$ toward Pt^0 which we observe is not general for trithioesters.


In order to determine if carbon—sulfur bond cleavage in $C_2H_4CS_3$ is a result of ring strain in the 5-membered ring structure, we examined the reactivity of the 6-membered ring compound, $(CH_2)_3CS_3$ [8]. It was found that reaction occurred readily with carbon—sulfur bond cleavage to give the analogous complex.

$$Pt(PPh_{3})_{4} + S \xrightarrow[]{C} C S \xrightarrow[]{C} C_{6}H_{6} \xrightarrow{Ph_{3}P} Pt \xrightarrow{S} C \xrightarrow{C} CH_{2} \xrightarrow{C} CH_{2} \xrightarrow{Ph_{3}P} Pt \xrightarrow{S} C \xrightarrow{C} CH_{2} \xrightarrow{Ph_{3}P} Pt \xrightarrow{C} CH_{2} \xrightarrow{C} CH_{2} \xrightarrow{Ph_{3}P} Pt \xrightarrow{C} CH_{2} \xrightarrow{C} CH_{2} \xrightarrow{Ph_{3}P} Pt \xrightarrow{Ph_{3}P}$$

The product cis-PtCS₂CH₂CH₂CH₂CH₂S(PPh₃)₂ is a stable, yellow crystalline solid, m.p. 200° (dec.). (Anal. Found: C, 54.3; H, 4.18; S, 10.1; Cl, 1.02. C₄₀H₃₆P₂PtS₃ • 0.1 CHCl₃ calcd.: C, 54.6; H, 4.13; S, 10.9; Cl, 1.20%.) The NMR spectrum (in CDCl₃) shows three complex multiplets for the methylene protons at $\tau 8.1$, 7.4, and 6.7.

While it appears that the reactivity of $C_2H_4CS_3$ and $(CH_2)_3CS_3$ as contrasted with $(CH_3S)_2CS$ cannot be ascribed to ring strain, their tendency to oxidatively add to Pt^o may be attributed to the formation of a stable chelate ring. Such a chelate ring could also be formed by the oxygen analog, ethylene carbonate, $C_2H_4CO_3$. It, however, does not react with Pt(PPh_3)_4 in C₆H₆ solution at 25°.

The complex cis-PtCS₂CH₂CH₂S(PPh₃)₂ reacts with CS₂ to form the known adduct Pt(CS₂)(PPh₃)₂ [7] and free C₂H₄CS₃.

These products were easily identified in solution by the strong bands in the IR spectrum at 1157 and 1076 cm⁻¹ corresponding to ν (C=S) of Pt(CS₂)(PPh₃)₂ and free C₂H₄CS₃, respectively, and by the singlet in the NMR spectrum at τ 6.02 for free C₂H₄CS₃. Complete ligand displacement occurs within 20 minutes at 25° when the complex is dissolved in CS₂, and over a period of about 10 h when CS₂ is added to a solution of the complex in either C₆H₆ or CHCl₃. The analogous *cis*-PtCS₂CH₂CH₂CH₂CH₂S (PPh₃)₂ reacts similarly with CS₂ to give Pt(CS₂)(PPh₃)₂ and free (CH₂)₃CS₃.

References

- 1 L. Malatesta and C. Cariello, J. Chem. Soc., (1958) 2323.
- 2 J.M. Jenkins and B.L. Shaw, J. Chem. Soc. (A), (1966) 770.
- 3 D. Commereuc, I. Douek and G. Wilkinson, J. Chem. Soc. (A), (1970) 1771.,
- 4 C.R. Green and R.J. Angelici, Inorg. Chem., 11 (1972) 2095.
- 5 E. Dobrzynski and R.J. Angelici, to be submitted for publication.
- 6 E. Wertheim, J. Amer. Chem. Soc., 48 (1926) 826.
- 7 M.C. Baird and G. Wilkinson, J. Chem. Soc. (A), (1967) 865.
- 8 W.H. Mills and B.C. Saunders, J. Chem. Soc., (1931) 537.